
www.manaraa.com

J Supercomput (2011) 55: 51–68
DOI 10.1007/s11227-009-0315-4

Automatically constructing trusted cluster computing
environment

Yongwei Wu · Chen Gang · Jia Liu · Rui Fang ·
Xiaomeng Huang · Guangwen Yang ·
Weimin Zheng

Published online: 9 July 2009
© Springer Science+Business Media, LLC 2009

Abstract Trusted Computing is a technology proposed by the Trusted Computing
Group (TCG) to solve security problems in computers. A lot of work has been con-
ducted to support Trusted Computing for individual computers; however little has
been done for distributed systems (e.g., clusters). If malicious or unqualified applica-
tions are deployed on cluster nodes, users may obtain forged results or their data may
be leaked out. In this paper, a methodology of the Trusted Cluster Computing (TCC)
is proposed to automatically construct user-trustable cluster computing environments.
User-specified applications are downloaded from user-specified locations and au-
tomatically and dynamically deployed on cluster nodes. To reduce the dynamic-
deployment overhead, a novel Heuristics-based Overhead-Reducing (HOR) replace-
ment strategy is also proposed. A highly configurable simulator has been imple-
mented to perform a series of simulations. The simulation results demonstrate that the
HOR can produce Average Speedup with up to 14% (light workload), 10% (medium

Y. Wu · C. Gang (�) · J. Liu · R. Fang · X. Huang · G. Yang · W. Zheng
Department of Computer Science and Technology, Tsinghua National Laboratory for Information
Science and Technology, Tsinghua University, Beijing 100084, China
e-mail: c-g05@mails.tsinghua.edu.cn

Y. Wu
e-mail: wuyw@tsinghua.edu.cn

J. Liu
e-mail: liu-jia04@mails.tsinghua.edu.cn

R. Fang
e-mail: fangr06@mails.tsinghua.edu.cn

X. Huang
e-mail: huangxiaomeng@gmail.com

G. Yang
e-mail: ygw@tsinghua.edu.cn

W. Zheng
e-mail: zwm-dcs@tsinghua.edu.cn

mailto:c-g05@mails.tsinghua.edu.cn
mailto:wuyw@tsinghua.edu.cn
mailto:liu-jia04@mails.tsinghua.edu.cn
mailto:fangr06@mails.tsinghua.edu.cn
mailto:huangxiaomeng@gmail.com
mailto:ygw@tsinghua.edu.cn
mailto:zwm-dcs@tsinghua.edu.cn


www.manaraa.com

52 Y. Wu et al.

workload), 8% (heavy workload) higher than that of LRU-based strategies, with a
typical setting of the Average Ratio of Deployment time to Execution time (ARDE)
being 0.2.

Keywords Trusted Computing · Cluster Computing · Automatic Deployment ·
Distributed system · Replacement strategy

1 Introduction

Trusted Computing [1] is a technology proposed by the Trusted Computing Group [2]
to solve security problems in computers. It is applicable to protect, for example, copy-
right of music and systems against viruses. Compared with traditional security tech-
nologies (e.g., ssh), Trusted Computing requires almost every component (e.g., CPU,
memory, disk driver, and OS) of a system to participate in trusted behavior. Another
important difference between Trusted Computing and traditional security technolo-
gies is that computers (hardware and software) are not fully under the control of own-
ers of the computers. Many projects, including Microsoft NGSCB (Next-Generation
Secure Computing Base) [3] and Intel TXT (Trusted Execution Technology) [4], have
been conducted to support Trusted Computing.

Although a lot of works have been done to support Trusted Computing for indi-
vidual computers, little has been done for distributed systems (e.g., clusters), which
also face serious security problems. Generally speaking, clusters are placed in a re-
mote computing center, which is usually geographically located far away from the
users. The clusters’ hardware and software are first installed and configured by the
administrators of the clusters. Jobs are then submitted by the users and scheduled
to the computing nodes by a cluster management software (e.g., OpenPBS [5]). The
users always expect that any computation and data transferring during the process are
safe and trusted. However, traditional distributed systems are not completely trustable
because 1) applications already deployed on the cluster nodes may be unqualified ac-
cording to the users’ requests (e.g., version mismatch); therefore, the computation
results may not be correct, and 2) malicious applications may return forged results or
steal key information of the users.

To construct a trusted cluster computing system, we propose a strategy, called
Trusted Cluster Computing (TCC), to address the problems we discussed above. In
the TCC, a user submits a job together with the description of the applications re-
quired to accomplish the job request to a cluster. The Application Manager of the
cluster is responsible for checking whether the specified applications have been de-
ployed on the cluster nodes. If not, the Application Manager has to download the
specified applications from the user-specified location, and deploy them onto cluster
nodes. With this dynamic-deployment mechanism, user-trustable distributed systems
can be constructed and therefore malicious or unqualified applications will never get
a chance to perform any computation. Notice that this dynamic-deployment mecha-
nism also introduces a certain overhead. On one hand, the capacity of a computing
node is normally limited; therefore there is a need to repeatedly swap in and out ap-
plications on it. On the other hand, network bandwidth may be low, and additionally
the applications often have a considerably large size.



www.manaraa.com

Automatically constructing trusted cluster computing 53

To reduce the dynamic-deployment overhead discussed above, we propose a novel
Heuristic-based Overhead-Reducing (HOR) replacement strategy, with which the
node being deployed a new user-requested application on and applications to be
evicted from this node to accommodate the newly requested application are care-
fully chosen, so that Average Speedup of the node can be maximized. Speedup of a
job here is defined as the ratio of new completion time with some strategy to original
execution time. Job speedup of an application here is defined as the Speedup of a
job when the application is chosen to be deployed or undeployed. Job speedup of a
node here is defined as the Speedup of a job when the node is chosen to deploy or
undeploy some applications on it. Average Speedup of a node in this paper is defined
as the mean value of Speedup for a group of jobs. Actually, “speedup” does not mean
“faster” in this paper.

An evaluation function is designed to predict and compare the Average Speedups
of candidate deployment nodes or evicted applications. The node with maximum pre-
dicted Average Speedup is chosen to place a new application, and the old applications
with maximum predicted Average Speedup are chosen to be swapped out. Compared
with traditional and widely implemented Least Recently Used (LRU)-based applica-
tion replacement strategies, our HOR strategy considers not only access frequency
but also size of software packages, number of instances and average execution time
of applications.

Three main goals are achieved in this paper. 1) Our proposed TCC methodology
allows an application to be automatically deployed on a computing node only if no
instance of the application can be found on available nodes. Due to the limit of re-
source capacity, some less-worthy applications can be undeployed to release resource
for the newly requested application, called application replacement. 2) We formal-
ized the application replacement problem and propose the HOR replacement strategy
to maximize estimated Average Speedup. 3) We implemented a highly configurable
simulator and conducted a series of simulations to evaluate our HOR strategy by com-
paring it with two commonly applied LRU-based strategies. The simulation results
show that jobs with our HOR strategy take the least relative delay-time to finish.

The rest of the paper is organized as follows. In Sect. 2, we describe the TCC
architecture. Section 3 formalizes the application replacement problem in the TCC
and presents the HOR strategy. The simulation methodology is presented in Sect. 4.
Section 5 examines the performance of the HOR and LRU-based strategies. Related
work is discussed in Sect. 6. Last, we draw a conclusion in Sect. 7.

2 Trusted Cluster Computing

In this section, the TCC methodology we proposed to construct a trusted clus-
ter computing system is discussed, including the environment architecture of the
TCC (Sect. 2.1), the layout of the TCC (Sect. 2.2), the application deployment of
the TCC (Sect. 2.3), and the application replacement of the automated deployment
(Sect. 2.4).



www.manaraa.com

54 Y. Wu et al.

2.1 Trusted Computing environment architecture

Figure 1 presents the architecture of the Trusted Computing environment. At the bot-
tom of architecture is the Trusted Platform Module specification, proposed by the
TCG. According to this specification, a chipset, named Trusted Platform Module, is
required for a computer to enable the Trusted Computing. It is used to keep a pair
of RSA (an algorithm for public-key cryptography) public and private keys, which
can be used to generate signature or encrypt/decrypt data. For security purposes, it
is impossible for anyone to retrieve a copy of the RSA private key from the TPM
(Trusted Platform Modules) [6] chipset. The Trusted Computing is heavily based on
the safety of the private key.

The hardware level is the level above the TPM level. Many IT manufactories have
their own products to support trusted computing. Intel TXT [4] is one of them, which
can create a private environment for an application. With TXT, some specific memory
area can also be guarded for some specific process and refuses the access from any
other applications.

The upper level is the software level. Many features of trusted computing require
not only the extension of hardware but also the support of operating systems (OS).
Microsoft NGSCB [3] implements a part of trusted computing. Based on the TPM
and other Trusted-Computing enabled hardware, the NGSCB provides functions such
as storage and memory protection for NGSCB-enabled applications, which interact
with the Windows OS through a special interface, named Nexus API.

The top level is for distributed systems. This level is currently neglected by re-
searches on Trusted Computing. However, most of top High Performance Comput-
ing systems in the world currently are clusters. The computation therefore should be
trusted not only in an individual computer but also in a distributed system like a clus-
ter. What users care about most in a cluster are the applications deployed on it. The
users should have rights to validate that the applications on a cluster system are qual-
ified and trustable. If not, the users should be able to reconfigure the cluster and such
a reconfiguration support should thus be provided in the cluster system. The Trusted
Cluster Computing environment architecture is our solution proposed to satisfy this
user requirement, which constructs a trusted cluster by automatically and securely
deploying applications to its computing nodes.

Fig. 1 Architecture of Trusted Computing environment



www.manaraa.com

Automatically constructing trusted cluster computing 55

2.2 Layout of Trusted Cluster Computing

A typical layout of our Trusted Cluster Computing environment is shown in Fig. 2,
which is composed of a switch and three computers (i.e., computing nodes of the
cluster). Each of them is a traditional trusted computing system consisting of trusted
hardware and OS. Therefore, the users can be assured that the hardware has not been
changed and the applications have not been cracked. But this is not enough for trusted
cluster computing. If the users observe that there are unqualified or malicious appli-
cations on some computing nodes, these computing nodes have to be automatically
reconstructed. For an individual and personal computer, the users normally have priv-
ileges and are able to manually reconfigure the computer; however this is not the case
for a cluster. In most clusters, administrators are the ones who own the rights to recon-
figure the clusters. Allowing the administrators to reconfigure the clusters is insecure
and inefficient.

Thus, an Application Manager, a cluster node responsible for automatically de-
ploying and undeploying applications, is introduced in our TCC environment. The
following four requirements should be satisfied in order to guarantee the security
of the environment constructed by its Application Manager. First, before the Appli-
cation Manager deploys a new application, all the chosen nodes have to attest the
security of OS, previously deployed applications and the Application Manager itself.
This function is supported by traditional trusted computing technologies (without

Fig. 2 Layout of the Trusted Cluster environment



www.manaraa.com

56 Y. Wu et al.

Application Managers). Second, the applications to be deployed by the Application
Manager should be specified by the users. The application specification can be sub-
mitted along with the computation request by the users. Third, the applications to be
deployed should be obtained from a trustable location on network. The trustable lo-
cation should also be specified by the users and authenticated by using the RSA key.
Fourth, the applications should be safely deployed without receiving any potential
attacks from malicious applications. This action can also be achieved by traditional
Trusted Computing technologies, such as sealed storage and memory curtaining.

To support the above second and third requirements, an Application Server is lo-
cated outside of the trusted cluster. As shown in the left side of Fig. 2, the Application
Server keeps its own RSA public and private key, which can be used to authenti-
cate identification of the Application Server itself. Application packages are actually
stored in the Application Repository managed by the Application Server.

2.3 Automatically and securely deploy applications for Trusted Cluster Computing

The procedure of the Application Manager automatically and securely deploying an
application to its cluster is presented as a UML (Unified Modeling Language) [7]
sequence diagram in Fig. 3. Four major participators (User Agent, Application Man-
ager, Application Server and Computing Node) are involved in the procedure. The
whole procedure can be roughly divided into three interaction segments. In the first
segment, the user agent first requests the computing nodes to attest their security.
The main objective of this step is to validate that the Application Manager on each

Fig. 3 Procedure of automatically and securely deploying an application



www.manaraa.com

Automatically constructing trusted cluster computing 57

node is original and reliable by using traditional Trusted Computing technologies.
Then the user agent submits an application request to the Application Manager of a
node. Together with the request, the public key owned by the Application Server is
also transferred to the Application Manager the node. In the second segment, if the
application required by the user agent is available on this node, the response will be
sent back to the user immediately; otherwise, the Application Manager communi-
cates with the user-specified Application Server and authenticates its identification.
Then, the application will be downloaded from the Application Server. The applica-
tion is then deployed on the computing node by the Application Manager. In the last
segment, the user agent submits a computation request to the computing node. The
computing node calls the corresponding application to accomplish the request.

As shown in Fig. 3, the Application Manager is the key component of the TCC.
Its data and memory area should be protected carefully. For example, the application
package downloaded from the Application Server should be stored in a secure place
like sealed storage. Any access requests from other processes should be prohibited.

2.4 Application replacement in Automatic Deployment

A detailed view of the Automatic Deployment of the TCC is presented in Fig. 4.
In this view, the Application Repository and its computing nodes play key roles.
The Application Repository stores application packages available to the users in its
storage devices. The application packages are composed of either binary or source
files, which can be transferred to and then installed on the computing nodes. As shown
in Fig. 4, there are seven application packages (designated from ‘A’ to ‘G’) in the
storage devices of the Application Repository. The width of an application’s block
(e.g., block ‘A’) roughly indicates the size and access frequency of the application.
Each computing node has fixed space to be occupied by application packages. For
example, in Fig. 4, the applications ‘A’ and ‘B’ have been installed in the computing
node 1 (two grey blocks), which still have some space unoccupied (i.e., the white
area). Using Fig. 4 as an example, we describe the procedure of the Application
Replacement as follows.

When a request for the application ‘F’ comes, the scheduler of the system fails
to find any instance of the application ‘F’ on all available nodes, which is referred
to as Invoking Miss. A node available but not deploying the requested application
is termed a Raw Node in this paper. In the case of Invoking Miss, the scheduler
suspends the request for the application ‘F’. Since node 1 has sufficient space to place
the application ‘F’, the Application Manager of the system is invoked to transfer the
application package of ‘F’ and install it on node 1. When the transformation and the
installation are done, the scheduler resumes the suspended request and schedules it
to node 1.

When a request for the application ‘G’ comes, none of the nodes have enough
space to install the application ‘G’, in which case the scheduler takes the following
actions: first, it selects an appropriate node from all available nodes by following the
application replacement strategy (described in Sect. 3); second, some of the deployed
applications on the selected node are undeployed to release resource of the node for
the user-requested application ‘G’. For example, if the scheduler selects node 3 as



www.manaraa.com

58 Y. Wu et al.

Fig. 4 Application replacement in automatic deployment

the node to deploy the application ‘G’, then the Application Manager undeploys the
applications ‘A’ and ‘D’ to make room for the application ‘G’. These two actions are
key steps of the Application Replacement.

3 Application replacement strategies

As we discussed in the previous section, when none of the nodes has enough space to
install a requested application, a strategy is required to determine which node is se-
lected to install the application and which installed applications of the selected node
should be undeployed in order to make enough space for the newly requested appli-
cation. This application replacement strategy has a significant impact on the overhead
of Automatic Deployment. In this section, we formalize the application replacement
problem by formally specifying the preliminaries of the strategy (Sect. 3.1), present-
ing the optimization objective (Sect. 3.2) and giving the Heuristic-based Overhead-
Reducing (HOR) replacement strategies (Sect. 3.3).



www.manaraa.com

Automatically constructing trusted cluster computing 59

3.1 Preliminaries

Notation used throughout this paper is as follows:
S: {S1,S2, . . . ,Sn} = a set of computing nodes.
A: {A1,A2, . . . ,Am} = a set of applications.

Rj : {R1
j ,R

2
j , . . . ,R

kj

j } = a set of requests for the j th application. The number of
requests for the j th application is kj .

Vi = the size of ith application package.
D = the available size of disk space on a node.
B = the bandwidth.
Applications are scattered on the nodes within a cluster. To denote the distribution

of applications, a matrix is defined as follows:

C =

⎛
⎜⎜⎜⎜⎝

A1 A2 · · · Am

S1 c1
1 c2

1 · · · cm
1

S2 c1
2 c2

2 · · · cm
2

...
...

...
. . .

...

Sn c1
n c2

n · · · cm
n

⎞
⎟⎟⎟⎟⎠

(1)

c
j
i =

{
0 Aj has not been deployed on Si

1 Aj has been deployed on Si

The ith row in C means the array of the deployment status for all applications
on the ith node, and the j th column in C denotes the array of the deployment status
of the j th application on all nodes. Since there is no reason to have more than one
copy of the same application on a single node, the value of entry c

j
i must be either 0

or 1. The number of instances of the j th application on all nodes can be obtained by
cj = ∑n

i=1 c
j
i .

3.2 Optimization objective

It is not desirable for the users to wait for a long time to get their requested appli-
cations deployed in a cluster; therefore the optimization objective of the application
replacement strategy is to minimize the time cost of deployment and maximize the
Average Speedup. To formalize the optimization problem, we define the Average
Speedup of a request as e

e+w
, where w is the time taken for the completion of the de-

ployment of an application, and e is the time cost of the execution of the application.
The Average Speedup of all jobs is defined as

Average Speedup =
∑m

j=1

(
Wj

Ej +Wj
· kj

)

K
=

m∑
j=1

(Lj · Pj ) (2)

where Ei is the average execution time of requests for the ith application, Lj is the
Average Speedup of all requests for the j th application, Pj is the probability that the



www.manaraa.com

60 Y. Wu et al.

j th application is requested, K is the total number of requests, Wj is the deployment
time of the j th application, and ek

j is the execution time of the kth request for the j th
application. Then, the optimization objective is formulated as:

Obj. Maximize (AverageSpeedup)

s.t.
m∑

j=1

(
c
j
i · Vj

) ≤ D, 1 ≤ i ≤ n (3)

3.3 Heuristic-based Overhead-Reducing (HOR) replacement strategies

As shown in Fig. 5, processing the kth request is composed of four periods: Sus-
pended, UnDepoyment, Deployment, and Execution. Only the periods UnDeployment
and Deployment are related to application replacement. As we already discussed in
Sect. 2.4, application replacement contains two key steps: selecting an appropriate
node to install a requested application and undeploying selected applications to make
room for the requested application.

For the first step, the node with maximum Average Speedup is chosen to place the
requested application. NASpeedupi is defined as the increment of Average Speedup,
caused by the undeployment of all the applications on an ith node. Let Li be the
speedup at the time of t2(k) and L′

i the speedup at the time of t3(k). Suppose all
the applications on the ith node are undeployed during the time period from t2(k) to
t3(k). Then NASpeedupi can be obtained by L′

i − Li :

NASpeedupi = L′
i − Li =

m∑
j=1

(
(l′j − lj ) · Pj

)
, (4)

Pj = 1/Ij∑m
j=1(1/Ij )

For the second step, the application(s) with the maximum increment of Average
Speedup on the selected node is (are) chosen to be evicted. Let lj denote the Aver-
age Speedup just before undeployment of the j th application, and let l′j denote the
Average Speedup after undeployment of the j th application. The increment of the

Fig. 5 Lifetime of the kth request



www.manaraa.com

Automatically constructing trusted cluster computing 61

Average Speedup caused by evicting the j th application is l′j − lj :

l′j − lj = (1 − nidle
n

)c
j −1 · nidle

n
· Ej

Ej + (Vj /B)
(5)

Here Ej is the average execution time of the requests for the j th application, n is the
total number of nodes in the cluster, nidle is the number of idle nodes when a request
comes, and c

j
i has been defined in (1).

4 Simulation methodology

Based on the Automatic Deployment model discussed in Sect. 2.4, a simulator was
constructed to evaluate our HOR strategy. This simulator is composed of three com-
ponents: Workload Generator, Virtual Resource and Job Scheduler. The Workload
Generator generates a sequence of synthetic requests. The Virtual Resource records
the status of virtual resources such as the information of where an application has
been deployed and whether a job is running on a specified resource. Since the study
of the scheduling strategy is beyond the scope of this paper, the Job Scheduler of
the simulator always randomly schedules the current job to some resource and the
requests are invariably processed with the order of their arrival times. When the re-
quested application has not been deployed on any idle node, the Job Scheduler ex-
ploits the application replacement strategies discussed in Sect. 3 to choose a proper
node and deploy it.

Our simulator is highly configurable. First, the workload of the simulator is syn-
thetic and configurable. The Idle Ratio of the system is defined to be the average
ratio of idle nodes to all nodes. According to the value of idle ratio, the workloads
of the system are classified into three levels: heavy, medium, and light. By adjusting
the application arrival rate (AAR), all these three workload levels can be achieved.
AAR is the mean arrival rate of requests for an application, and should be multiples
of the Mean Interval of requests for the Most Popular Application (MIMPA). Second,
the disk space ratio (DSR) of the nodes is configurable. It equals the ratio of space
available on each node to the total size of all applications. Third, the Average Ratio
of Deployment time to Execution time (ARDE) of all applications is configurable.
It represents the relative overhead of application deployment. The combination of
AAR, DSR and ARDE can approximately represent the setting of the simulations.
So, we define the triple set of [AAR, DSR, ARDE] to represent the simulation set-
ting. The Mean interval time and mean execution time of the requests is obtained by
calculating the weighted arithmetic mean of the last ten requests for a specified appli-
cation. The other simulation settings, such as application number, total job number,
and node number, are all fixed. Finally, the number of jobs permitted to run concur-
rently in a node is not more than one. Table 1 shows the detailed information of the
system workload of the simulations.



www.manaraa.com

62 Y. Wu et al.

Table 1 Workload setting in
the simulations Workload Maximum value Minimum value Average value

(Idle ratio)

Heavy 1.84% 1.63% 1.72%

Medium 49.85% 35.32% 45.39%

Light 95.84% 93.26% 95.23%

5 Evaluating HOR strategy

We evaluate our HOR strategy for application replacement by performing a series of
simulations using the simulator we designed. The HOR strategy is compared with two
commonly used LRU-based strategies: R-LRU and C-LRU. In the rest of the section,
the two LRU-based strategies are described in Sect. 5.1 and the detailed simulation
results are discussed in Sect. 5.2.

5.1 Two LRU-based strategies

As previously discussed in Sect. 2.4, when a request comes and none of the nodes
have enough space to install the requested application, an application replacement
strategy should take the following steps: 1) determine which node is selected to in-
stall the application and 2) determine which installed applications of the selected
node should be undeployed in order to make enough space for the newly requested
application. To study the performance improvement of applying our HOR, two com-
monly applied LRU-based strategies (R-LRU and C-LRU) are used to compare with
our HOR.

R-LRU strategy: The R-LRU strategy exploits a simple approach of randomness
to select a node in the first step. When an Invoking Miss (discussed in Sect. 2.4) is
encountered, a node is chosen randomly from the pool of idle nodes to place the new
application. In the second step, LRU is called to choose applications with the oldest
(i.e., minimum) Last Access Time (LAT) to be evicted.

C-LRU strategy: In the first step, C-LRU selects an appropriate node, a node
with the minimum Last Access Time of Node (NLAT), to deploy the new application.
NLAT is defined as the weighted arithmetic mean of application LATs on the node:

NLAT i =
m∑

j=1

(
c
j
i · Vj · LATj

)

where j is the ID of the application and i is the ID of the specified node. In the second
step, the C-LRU employs the method of LRU, which is similar to R-LRU.

5.2 Simulation results

Figure 6 shows the performance of the three strategies (i.e., R-LRU, C-LRU and
HOR) in the case of a heavy workload with the MIMPA being 10. Figure 6(a) shows



www.manaraa.com

Automatically constructing trusted cluster computing 63

Fig. 6 Performance of HOR
with heavy workload

(a) Speedup of various ARDE.

(b) Speedup of various Disk Space Ratio.

the Average Speedup with the setting of [10, 0.16, *], where * means that the ARDE
varies from 0 to 1. The first line in Table 1 gives its idle ratio. It can be observed
that the percentage of idle nodes is only about 1.7%. The vertical axis denotes the
Average Speedup (Sect. 3.2). The performance of R-LRU and C-LRU are similar and
significantly worse than that of HOR. Figure 6(b) gives a detailed presentation of the
Average Speedup with the setting of [10, *, 0.2], where * denotes that the DSR varies
from 0.016 to 0.64. When the space becomes more sufficient and less replacement is
required, the performances of the three strategies are closer.

R-LRU only takes the access frequency of applications into account. C-LRU ne-
glects the number of replicas and the average execution time of applications. Different
application sizes produce different time costs of deployment. The number of replicas
affects the probability of deployment of an application. The average execution time
of an application is one of the major factors determining the Average Speedup. HOR
can evaluate the result of choosing different nodes and applications during the de-



www.manaraa.com

64 Y. Wu et al.

Fig. 7 Performance of HOR
with medium workload

(a) Speedup of various ARDE.

(b) Speedup of various Disk Space Ratio.

ployment and undeployment periods according to the access frequency, size, number
of replicas, and average execution time. Thus, the HOR strategy can select the best
node or application so that the decrease of Average Speedup can be minimized.

Figure 7 shows the performance of the three strategies in the case of a medium
workload with the MIMPA being 200. Figure 7(a) has the setting of [200, 0.064, *].
As shown in the second line of Table 1, the percentage of idle nodes is within the
range from 35% to 50%. It can be observed from Fig. 7(a) that HOR has the highest
Average Speedup. In Fig. 7(b), the details of the Average Speedup of the medium
workload are presented with the setting of [200, *, 0.2]. When the disk space ratio
is less than 0.244, HOR always performs better than the other two strategies. For a
medium workload, HOR is better than two LRU-based strategies for a similar reason
as a light workload.



www.manaraa.com

Automatically constructing trusted cluster computing 65

Fig. 8 Performance of HOR
with light workload

(a) Speedup of various ARDE.

(b) Speedup of various Disk Space Ratio.

Figure 8 presents the performance of the three strategies in the case of a light
workload with the MIMPA being 2000. Figure 8(a) has the setting of [2000, 0.04, *].
As shown in the third line of Table 1, the percentage of idle nodes is more than 90%.
Figure 8(a) shows that HOR for light workload yields the highest Average Speedup,
and R-LRU gives the lowest. Figure 8(b) presents the detailed Average Speedup with
a setting of [2000, *, 0.2]. It can also be observed from Fig. 8(b) that HOR is the
best.

Based on the results presented in Figs. 6, 7, and 8, we can conclude that our HOR
strategy can result in a shorter average delay-time of jobs than two LRU-based strate-
gies in most cases. HOR can always give the highest or near-highest Average Speedup
among the three strategies. With a typical setting of ARDE being 0.2, HOR can pro-
duce an Average Speedup with up to 14% (light workload), 8% (heavy workload) and
10% (medium workload) higher than LRU-based strategies.



www.manaraa.com

66 Y. Wu et al.

6 Related works

6.1 Trusted Computing

Trusted Computing has been supported and adopted by many manufactories, includ-
ing Intel and Microsoft. However the currently proposed technologies are only ap-
plicable for individual computers. Trusted Computing in distributed system has not
been well explored.

The TPM [6] specification, proposed by TPG [2], envisioned a standard PC plat-
form equipped with a TPM chip. A hardware private key is stored in the TPM chip.
This key can be used to sign the specific system status including deployed software.
Then the signature can be used to check whether the current running environment is
the same as the original one.

Intel proposed the Trusted Execution Technology (TXT) [4] to support trusted
computing. TXT extends the hardware of processors to provide a much safer com-
puting environment. It consists of several hardware enhancements including a TPM.
Isolated execution environments can be created to prevent malicious attack. Key data
can be signed and guarded by the TPM. AMD also has their technology for trustwor-
thy computing, named Secure Execution Mode (SEM) [8].

Next-Generation Secure Computing Base (NGSCB) [3] is the solution for trusted
computing from Microsoft. It is based on the TPM 1.2 specification, Intel’s TXT and
AMD’s SEM. In NGSCB, there are two software components: the Nexus, which is
a security kernel that is part of the Operating System, and Nexus Computing Agents
(NCAs), which are trusted modules within NGSCB-enabled applications.

The above technologies can support the construction of a trustworthy computer.
Remote Attestation, Sealed Storage, Memory Curtaining and Secure I/O are imple-
mented and ensured to support trusted computing on an individual computer. How-
ever, they cannot support trusted computing for distributed systems, which have
aroused wide concern recently. This paper makes effort to construct an environment
of Trusted Cluster Computing (TCC).

6.2 Replacement strategy

Local cache replacement strategies have been investigated for a long time, especially
in virtual storage. Traditionally and frequently used schemes include ARC [9], FIFO,
LRU, LFU, LRU-2, 2Q, LIRS, FBR, LRFU and MQ. The main drawback of these
strategies is that they cannot deal with the case where sizes and miss costs of cache
objects are nonuniform.

Nonuniform-cost local replacement has also been addressed by some strategies,
such as BCL, DCL, ACL proposed by Jaeheon [11], and Lowest-latency-first [12].
Their main drawback is that two cache blocks with the same miss cost but different
size are treated equally. Other nonuniform-cost schemes (e.g., LRU-Threshold [13])
neglect the fetch cost of a block. GreedDual-Size [14] is only helpful in the case of
single cache space.

Some other studies (e.g., [16, 17]) exploit cooperative strategy to solve multi-
cache problem. However, they do not address the problem of where to put the re-
quested data.



www.manaraa.com

Automatically constructing trusted cluster computing 67

The data replication strategy [18, 19] in P2P Networks is similar to the applica-
tion replication in our work. [10], [15] and [20] proposed by Keqiu Li mainly target
to solve the problems on multimedia and web caching. However, the optimization
objective in our study is to decrease the miss rate, which is different from their ob-
jective.

7 Conclusion

Trusted Computing in individual computers has been supported and adopted by many
organizations and manufactories; however, little work has been done to construct
trusted computing for distributed systems like clusters. Trusted Cluster Computing
is proposed in this paper to construct trusted computing environment for distributed
systems. In Trusted Cluster Computing, user-specified applications are automatically
and securely downloaded from a user-specified location and deployed to cluster com-
puting nodes. Thus, users can obtain a trusted cluster environment and be protected
from unqualified or malicious applications.

To reduce the overhead of dynamic deployment of the TCC, a novel HOR
(Heuristic-based Overhead-Reducing) replacement strategy is also proposed. It con-
siders not only access frequency like traditional LRU-based strategies but also the
size of software package, the number of application copies and the average execution
time of applications. A simulator is designed, implemented and used to perform a set
of simulations. The simulations show that the HOR can produce an Average Speedup
with up to 14% (light workload), 8% (heavy workload) and 10% (medium workload)
higher than LRU-based strategies, with a typical setting of ARDE being 0.2.

Acknowledgements This work is co-sponsored by Natural Science Foundation of China (60573110,
90612016, 60673152, 60773145), National High-Tech R&D (863) Program of China (2006AA01A101,
2006AA01A106, 2006AA01A108, 2006AA01A111, 2006AA01A117), and National Basic Research
(973) Program of China (2003CB317007, 2004CB318000).

References

1. Pearson S (2002) Trusted computing platforms. Prentice Hall International, Englewood Cliffs
2. Buyya R, Abramson D, Giddy J, Stockinger H (2002) Economic models for resource management

and scheduling in Grid computing. Concurr Comput-Pract Exp 14(13–15):1507–1542
3. Peinado M, Chen Y, England P, Manferdelli J (2004) NGSCB: a trusted open system. In: Lecture

notes in computer science, vol 3108. Springer, Berlin, pp 86–97
4. Intel Trusted Execution Technology (2009) http://download.intel.com/technology/security/

downloads/315168.pdf
5. OpenPBS home page (2009) http://www.openpbs.org/
6. Trusted Platform Module (TPM) Specifications (2009) https://www.trustedcomputinggroup.org/

specs/TPM/
7. OMG Unified Modeling Language Specification (2009) http://www.omg.org/docs/formal/00-03-01.

pdf
8. Trusted Computing Group (2009) https://www.trustedcomputinggroup.org/
9. Megiddo N, Modha DS (2004) Outperforming LRU with an adaptive replacement cache algorithm.

Computer 37(4):58
10. Li K, Shen H (2005) Coordinated enroute multimedia object caching in transcoding proxies for tree

networks. ACM Trans Multimed Comput, Commun Appl (TOMCAPP) 5(3):289–314

http://download.intel.com/technology/security/downloads/315168.pdf
http://download.intel.com/technology/security/downloads/315168.pdf
http://www.openpbs.org/
https://www.trustedcomputinggroup.org/specs/TPM/
https://www.trustedcomputinggroup.org/specs/TPM/
http://www.omg.org/docs/formal/00-03-01.pdf
http://www.omg.org/docs/formal/00-03-01.pdf
https://www.trustedcomputinggroup.org/


www.manaraa.com

68 Y. Wu et al.

11. Jeong JH, Dubois M (2006) Cache replacement algorithms with nonuniform miss costs. IEEE Trans
Comput 55(4):353–365

12. Wooster RP, Abrams M (1997) Proxy caching that estimates page load delays. Comput Netw ISDN
Syst 29(8–13):977–986

13. Abrams M, S Dept of Computer, I Virginia Polytechnic, State U (1995) Caching proxies: limitations
and potentials. In Proc of 4th international world wide web conference, 1995

14. Cao P, Irani S (1997) Cost-aware WWW proxy caching algorithms. In: Proceedings of the USENIX
symposium on Internet technologies and systems, Monterey, CA. USENIX Assoc, Berkeley, pp 193–
206

15. Li K, Shen H, Chin FYL, Zhang W (2007) Multimedia object placement for transparent data replica-
tion. IEEE Trans Parallel Distrib Syst 18(2):212–224

16. Zhu YW, Hu YM (2007) Exploiting client caches to build large Web caches. J Supercomput
39(2):149–175

17. Dahlin MD, Wang RY, Anderson TE, Patterson DA (1994) Cooperative caching: using remote client
memory to improve file system performance. In: Proc of first symposium on operating systems design
and implementation, pp 267–280

18. Tewari S, Kleinrock L (2006) Proportional replication in peer-to-peer networks. In: Proceedings of
25th IEEE international conference on computer communications (INFOCOM), pp 1–12

19. Cohen E, Shenker S (2002) Replication strategies in unstructured peer-to-peer networks. In: Proceed-
ings of ACM SIGCOMM’02, 2002

20. Li K, Shen H, Chin FYL, Zheng SQ (2005) Optimal methods for coordinated enroute Web caching
for tree networks. ACM Trans Internet Technol (TOIT) 5(3):480–507



www.manaraa.com

Copyright of Journal of Supercomputing is the property of Springer Science & Business Media B.V. and its

content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's

express written permission. However, users may print, download, or email articles for individual use.


